

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 141-145 Zhang Yonghua

141

Research of concurrency control protocol based on the main
memory database

Yonghua Zhang*

Shijiazhuang University of economics, Shijiazhuang, Shijiazhuang, China

Received 1 October 2014, www.cmnt.lv

Abstract

The concurrent access of data can cause the inconsistency. How to control it efficiently is one of the question of the first importance in

the database application system. In this paper a management mechanism called dynamic multi-grain lock and a related concurrency
control protocol were given.

Keywords: concurrency access, management mechanism, dynamic multi-grain lock, protocol

1 Concurrency control overview

In the database system, the transactions can be executed
serially one by one, that is, there is only one transaction
running each time and the other transactions have to wait
until the end of that transaction. In order to fully utilize the
system resources and develop the feature of database
shared resources, the multiple transactions to be executed
in parallel should be allowed.

In the application system, the process for the multiple
users to concurrently access the same data is called
concurrent access of the data. When the multiple users
access the database concurrently, there would be the
situation of multiple transactions accessing the same data
at the same time. If no control has been applied in the
concurrent operation, it is possible to access the wrong
data, which would destroy the database consistency.
Therefore, the database management system should
provide the concurrency control mechanism. When the
multiple users access the database concurrently, there
would be the situation of multiple transactions accessing
the same data at the same time. If no control has been
applied on the concurrent operation, it is possible to access
the wrong data, which would destroy database consistency.
Therefore, the database management system should
provide the concurrency control mechanism. For the main
memory database system, the data locking overhead and
processing overhead are almost the same. The access speed
of memory is much faster than that of the disk, which has
significantly reduced the transaction execution time than
the disk database; correspondingly, the lock occupation
time has been shortened dramatically. Therefore, the
essential advantages and necessity of fine grained locking
have been lost. Hence the greater grain lock is generally
adopted in the main memory database such as relationship
level or database level, which has undoubtedly reduced the
complexity of concurrency mechanism and the burden in
the system, thereby improves the overall system
performance.

* Corresponding author’s e-mail: 493738175@qq.com

2 Concurrent executions of transactions

If the concurrent executions of transactions are not
reasonably scheduled, the transactional isolation will be
destroyed in causing the inconsistency of the data storage
area. Generally speaking, the concurrency control is not
required if the access data set of the concurrent
transactions is not correlated or intersected, or the write set
of transactions and the reading set of the other transactions
are not intersected. However, the data storage area is a
shared resource. The sharing way of the storage
information is to allow the multiple user access in
modifying the same data. That means the relations between
the transactions are much close and the access data is
intersected to a great extent. For instance, if an update
operation and an operation are conducted concurrently, the
writing and reading data will be contradicted. If two or
more updates are conducted concurrently, the update
information may be lost. Therefore, no correct access data
is obtained without the corresponding concurrent access
control method. How to control the concurrent access of
data efficiently is one of the question of the first
importance in the database application system.

Definition 1: The definition of the schedule S is based
on the transaction set T={T1,T2,...,Tn}, which it is an
operation series of the multiple transactions.

Definition 2: In the schedule S, the operations of each
transaction are not overlapped (namely, in sequence); it
will be the serial schedule.

Definition 3: The schedule S is serializable. When the
conflict S is equivalent to a serial schedule, the serial
schedule is generally called conflict equivalence
serializability.

The basic function of a concurrent controller (or
scheduler) is to generate a serial schedule in running the
transactions. In the main memory database system, the
majority of the concurrent control protocols are based on
the serializable theory. The concurrent control protocol is
used to control the schedule of the data of which its major

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 141-145 Zhang Yonghua

142

objective is to maintain the data consistency and provide
the maximized concurrency.

In some cases, it is able to appropriately loosen up the

requirements of consistency. The main memory database

is the shared data inherent in the memory. While the

transactions are conducted concurrently in the different

threads, it may cause the conflict to access the same data

object in the main memory database. The concurrent

control protocol is a strategy to solve the conflicts between

the transactions.

The common conflicting modes are stated:

“read-write” conflict and “write – write” conflict.

“read-write” conflict: To access the same data object

may cause the conflicts while a transaction is running the

“read” operations and another transaction is running the

“write” operation.

“write-write” conflict: To access the same data object

may cause the conflicts while a transaction is running the

“write” operation and another transaction is also running

the “write” operation.

In the main memory database, to resolve the conflict

based on the concurrent control protocol mainly depend on

two strategies:

Wait: terminate the conflicting operation caused by one

transaction and keep the pending state until the operation

of another transaction is completed. For the concurrent

transaction control study in the main memory database,

three kinds of waiting strategies are derived:

1) No wait: the waiting transaction is immediately

ended instead of the completion of another transaction

operation.
2) Wound wait: according to the arrival time of each

transaction, the transaction in running the data will be
ended when the transaction in obtaining the data is arrived
in an earlier way; otherwise, the transaction in obtaining
the data will be ended.

3) Wait die: according to the arrival time of each
transaction, the transaction continues to wait when the
transaction in obtaining the data is arrived in an earlier way.
Otherwise, the transaction is ended.

Revert: undo the conflicting operation. When the
transaction is reset, it is able to go back to the initial stage.

3 Implementation of main memory database lock

There are two major approaches to improve the
performance in MMDB. First of all, change the database
storage structure, put the tuple data and data together,
achieve a direct access of the metadata and decrease the
overhead of the metadata; secondly, the dynamic multi-
grain lock mechanism is applied in the concurrent
operation. In the lock mechanism, it is required to obtain
the corresponding lock before the transactions access the
data object. There are two basic types of locks: read lock
(shared lock) and write lock (exclusive lock). Multiple
transactions can share the read lock of the same data rather
than the write lock of the same data. We have adopted the
management mechanism of the dynamic multi-grain lock
in our research system. The lock manager has developed a

data lock and is applied to record the distribution status of
the data lock. The status of the data lock includes read
locked, write locked and unlocked. The data lock has
recorded all the transactions of the locked data. The locked
data transactions are divided into read lock holder and
write lock holder. At the same time, it will record all of the
blocked wait transaction lists in applying the data lock. In
the lock manager, there is a compatibility list. When the
transaction lock is applied, the lock manager will
determine whether to block the lock applicant according to
the compatibility list; when the transaction lock is released,
the transaction will be aroused to obtain the lock when the
blocked transaction is allowed to obtain the lock. In terms
of the manager, the transaction will lock the data item at
the logical level. The manager will schedule the grain from
the dynamics of the lock. When the conflicts are decreased,
it is suggested to use the table lock; when the conflicts are
enhanced, the tuple lock is applied.

There is a close relationship between the

implementation of MMDB lock manager and the database

organization. The MMDB system is composed of data and

metadata. Each segment will correspond to a table in the

database. It is known that there is a direct correlation

between the metadata and segment in the table lock,

between the metadata and partition in the tuple lock.

While the transaction submits the lock request and

MML receives the lock requests, it needs to discover the

lock grain information in the corresponding segment

control block that will be converted into the table lock; if

the tuple lock is detected, the tuple lock is applied. If the

transaction sends the table lock request, the table lock is

applied without being refined.

Dynamic Reduction of Lock Grain

The general condition of the dynamic reduction of lock

grain is stated in the following part. When the lock grain is

tuple lock, the lock grain information can be set as the table

lock when all the locks are compatible. According to the

transaction information in holding the lock, it is able to set

the control block of the table lock.

Dynamic Increase of Lock Grain

While increasing the lock grain, it needs to record the

tuple lock requests of the transaction in the active state.

When it needs to use the tuple lock, the memorized lock

will be converted into the real tuple lock. In addition, the

lock grain information is set as the tuple lock in the table.

The locked grain is closely correlated with the system

concurrency and the overhead of the concurrent control. In

general, the locked grain is greater with fewer locked

objects, smaller selectivity, lower concurrency and smaller

overhead; on the contrary, the locked grain is smaller with

more locked objects, greater selectivity, higher

concurrency and greater overhead.

At the logical level, the distributed database is an entity.

At the physical level, the distributed database is stored in

the varied physical nodes. Therefore, the chief and prompt

issue is to effectively conduct the concurrent control of the

data in the database application system. The current task is

to establish the reliable and feasible concurrent control

strategy in the remote database.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 141-145 Zhang Yonghua

143

4 Self-control lock

4.1 OVERVIEW OF SELF-CONTROL LOCK

The so-called self-control lock is to discard the lock
manager while the lock is applied and released through the
shared memory operations. Since there is no lock
management progress, it is able to avoid the low efficiency
in the management process. All the requests and releases
are directly operated in the shared memory while the index
does not require intra-process communication.

FIGURE 1 Database System Structure

In terms of the self-lock, the data items are correlated,
namely each data item corresponds to a LCB. A LCB will
record the current lock types and two transaction tables
that one is used to record the current transaction in holding
the lock while the other is used to record the transaction in
waiting the lock. Seemingly, there is no big difference for
the mechanism and the multi-processor developers to
realize the semaphore. In fact, there are the big differences:
firstly, it is different from the semaphore, the database lock
must be controlled so as to ensure the failure atomicity of
the transaction; secondly, the database lock is also used to
support the other locking modes other than the shared lock
and exclusive lock (Figure 1).

4.2 IMPLEMENTATION OF SELF-LOCK

4.2.1 Operation of self-lock

In view of the application conditions of the lock, a request
includes the name and type of the lock. After the hash
processing of the name of the lock, it will be converted into
the corresponding lock control block (LCB). All the
updates are conducted through a key component. If the
requested type is compatible with the current type of LCB
and there is no conflicting wait process, the record about
the process and the request type is added in the holder lists
and it is successfully locked. Otherwise, the record is
added into the wait process lists and the system will return
back the unapproved information to the requester. The
strategy of releasing the lock is similar. While finding the
corresponding LCB, the corresponding record will be
deleted in the holder list. If there are the compatible lock
requests in the waiting process, the request will be
approved. The strategy is similar with the traditional lock

mechanism. In the traditional lock mechanism, there is the
corresponding lock manager for each lock to conduct the
relevant operations rather than using the key component.
The lock operation code can be independently conducted
and it is able to ensure the specific LCB consistency
through the key component. The communication
efficiency is much higher than that of inter-process
communication.

4.2.2 Recovery

When the different records of the same page are locked
through the transactions at the different nodes, it is
required to obtain the renewal and cancelling information
so as to ensure that the transaction is not quitted for the
node failure. To renew the record is temporary while to
cancel the record is to store the information. For instance,
before the record is transferred to another node in one page,
the corresponding transaction will be recorded in the log
on account of the renewal and cancelling information for
the processed database object. In order to ensure that the
renewal record of the transaction is recorded before it is
transferred; the transaction can hold a short-term lock until
the renewal information is recorded.

4.2.3 Ensure the failure atomicity of the locked space

Due to the influence of the consistency protocol, LCB is
appeared in one node. While two transactions at the
different nodes obtain the same compatible lock, LCB will
be located at the node in obtaining the lock. Therefore,
when one node is broke, some information of the
transaction will be lost rather than all of the LCB. In order
to ensure the failure atomicity of the transaction, the
measures are taken: before the transaction obtains the lock,
it needs to record the transaction identifier (Tm); in
addition, before the lock is requested, it will temporarily
record the name of the lock and apply the transaction’s Tm.
These logs are used to ensure the consistency of the space
while the node is failed.

4.2.4 Relevant Performance Analysis

The self-lock request can be directly applied to the shared
memory in greatly improving its efficiency. In the SD and
SM database, the mechanism of the high lock grain is
similar. Through the interruption rate evaluation of the
large-scale share memory multi-processor system, it is
seen that for the general locking condition, CL’s overhead
is increased with the conflicting linear growth. The
interruption rate is a constant. For the hot lock, the
interruption performance is almost an order of magnitude
greater than that of CL.

5 Recoverable user-level spin lock

What is spin lock? It is a lock mechanism to protect the
shared resources. When the conflicts are reduced, the
efficiency of the spin lock is much higher than that of the
semaphore. Spin lock is busy waiting process in
consuming the CPU resources. However, it will not cause

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 141-145 Zhang Yonghua

144

the sleeping of the thread and the user state will not be
switched to the system status. Spin lock is applied when
the lock hold-up time is shorter with more CPU resources.
In order to implement the spin lock, it needs to set the
spinning times and prevent the endless loop. In terms of
the recursive call, the spin lock is forbidden of which it will
trigger the dead lock. For many spin locks, the atomic
operation is not available in obtaining the lock and
registering the holding information. When the key
component is terminated or the processing speed is slow
down, it is unable to correctly determine the holder. It is
able to conduct the recoverable user-level spin lock since
it is able to correctly determine the information of the
holder of the lock and be applied to the re-installation of
the protected data item and the subsequent lock release
operation. In this way, the system rebooting is avoided.

5.1 Implementation of the recoverable spin lock

First of all, it needs to add a data structure in each process
to record the required lock. It is called want domain. In this
way, it is helpful to determine the process set in holding
the lock. During the process of determining the holder, the
lock may be requested by the other processes in causing
the uncertainty of the process set. Therefore, it needs to
add a semaphore for the lock in determining the holder. If
it is in progress, the other processes may give up the
request of the lock and want domain. The pseudo code of
the corresponding data structure is stated as follows:

struct SafeSpinLock{

int lock;

ProcessID owner;

int cleanup_in_progress;

};

struct LockAccessRecord{

SafeSpinLock*wants;

};

The corresponding cleaning process is stated as follows:
Set the lock’s cleanup_in_progress to prevent the

missing of the want domain, and get the lock in the
cleaning process.

1) Decide all the possible processes in holding or
obtaining the lock

2) Conduct the loop operation until either of the two
conditions is satisfied:

A. The status of the spin lock becomes clear in being
idle or held by the active process.

B. The process set is empty. The lock is not held by any
active process. If A is available, the locked status is
immediately determined. Otherwise, it has to wait for a
period of time. Some processes are excluded and re-
organized. If A is not satisfied for all the time, B is finally
satisfied. The lock may be idle or being held by a dead
process. If the lock holder information is no_progress in
the dead process, it is known that the process is ended in
obtaining the lock and registering the information, or
releasing the lock. Under such conditions, the lock will be
released at ease; if the holder information is known, it can
conduct the recovery operation and release the lock again.
When there is the deal process or the waiting time is too

long for the lock request, it needs to call the cleaning
process in releasing the lock or conducting the
corresponding recovery operation.

5.2 Relevant Performance of spin lock

Since the spin lock has escaped the system, its operation
efficiency is higher than that of the semaphore. If it is
unable to correctly get the holder information, it needs to
restart the system and recover the information when the
holding process is ended. It is a huge overhead in
overriding the original advantages of spin lock. Based on
the above algorithms, it has no need to restart the system,
greatly improving the processing efficiency based on the
dead process and giving full play to the merits of spin lock.

6 Proposal of the protocol

According to the current research on the main memory
database and the characteristics of main memory database,
the matching concurrent control protocol is proposed in the
paper. The protocol model is introduced to ensure the
serializability of the transaction and preventing the other
transaction to read the dirty data without delivering the
transaction.

Traditionally, the lock based on the concurrent control
protocol includes read lock and write lock. The share and
non-share relations are applied between the locks. In this
way, there are three kinds of the blocking approaches in
the system:

write block

read block

write block

In the system model, there is a new relation between
read lock and write lock, that is to say the orderly sharing
relation in cancelling the above mentioned first and third
blocks. For instance: in order to cancel the read-write
block, the other transaction ti can still conduct the write
lock on the data object when the transaction tj has
conducted the read lock on a data object. At this time, it is
known to be the orderly sharing relation between ti read
lock and tj write lock. In order to ensure the serializability
of the transaction, the designed protocol shall conform to
the following rules:

Rule 1: If there is the orderly sharing relation between
the obtained lock of the transaction ti and the holding lock
of the transaction tj,

The corresponding ti operation is conducted until the
corresponding ti operation is completed (controlled by the
scheduling procedure).

ti is submitted until the ending/submission of tj.
The ending of a transaction will cause the consecutive

ending of the transactions in reading the “dirty data”,
which it will have a great influence to the system
performance. For the second blocking approach, the
orderly sharing relation is not available in our established
locking model. Based on the protocol, the transaction can
just read the submitted data.

Suppose 1 2 , ,..., nT t t T is the transaction set of
the system index and 1,2, ,iD t i n is the access

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 141-145 Zhang Yonghua

145

set of the transaction ti. As well, , iRL x t represents
that

it T conducts the read lock on the data object
()ix ED t ; , iWL x t represents that ti conducts the

write lock on x; , , , i iOS RL x t WL x t represents
there is the orderly sharing relation between the holding
read lock of x based on ti and the write lock of x based on
tj. PRI(ti) represents the priority of the transaction ti. The
protocol can be briefly described as: when the transaction

it T is implemented, ()ix D t , ti will conduct the
locking operation on the x. In the submitting or ending
process, ti will release the holding locks.

When ti tries to conduct the write lock on x, ti can still
obtain the write lock on the data object if x is read or write
locked by the other transactions. As well,

 , ,jOS RL x t , jWL x t or , ,iOS RL x t
 , jWL x t . When ti is ready to be submitted, it still keeps

the waiting status when Rule 1 is not satisfied or the date
of ti is not expired. Otherwise, it will be submitted when
Rule 1 is satisfied. If the date of tj is expired, ti has the top
priority. It will be submitted through the transactions when
it is ended previously or has the OS relations.

When ti tries to conduct the write lock on x, the
transaction ti can still obtain the read lock on the data
object when x is conducted the read lock through another
transaction tj.

If x is read locked by ti, the data object is write blocked
through the other transactions, that is to say.

If i jPRI t PRI t , ti can just obtain the read lock
when tj is submitted or ended.

If i jPRI t PRI t , it needs to estimate whether the
transaction ti can be completed at the deadline (to judge
whether it is completed at the deadline, it can compare the

present time with the filled deadline of the transaction and
the running time estimates). If tj can be completed at the
deadline, tj will be ended and ti will be allowed to conduct
the read lock on x; if ti cannot be completed at the deadline,
ti will be ended.

It is seen that the introduction of the orderly sharing
relation can greatly reduce the blocking situation in the
system, but the submission of the current transaction may
be postponed. The major design objective of ARTDEIS is
to satisfy the time limit of the initiative real-time
transaction rather than the response speed. Therefore, the
delay of the submission does not go against its major
design principle or stop the read/write operation of the
other transactions. When some high priority transaction
tries to end a low priority transaction, it will estimate
whether the high priority transaction can be completed at
the deadline so that it can prevent the running transaction
being ended by the other ending transaction (It is called
wasting end). Before the transaction is submitted, all of the
databases in conducting the write operation are locked.
Therefore, the other transactions cannot read the
uncommitted data so as to ensure the serializability of the
transaction.

7 Summary and innovations

In this paper, the author investigates the concurrent control
mechanism in the traditional database system and analyzes
the general control approaches. Based on the
characteristics of the main memory database, the matching
concurrent control protocol is proposed to ensure the
serializability of the transaction.

References

[1] Wang H, Pan Z 2004 Analysis of Data Structure in Main Memory

Database Modern Electronics Technique 27(3)

[2] Ma H, Yang B, Yao J 2003 Applied Multi-Dimensional Index

Structure in the Main Memory Database System Computer
Engineering and Applications 39(29)

[3] Liu Y, Liao G 2003 Applied Recovery System for Real-Time Main

Memory Database Journal of Chinese Computer System 24(3)
[4] Wang R, Huang Q, Tang L, Li W, Chen Q, Long K 2006 Memory

Management of Embedded TCP/IP Protocol Microcomputer

Information 3-2 69-72
[5] Zhou Y 2010 Improved Locking Protocol in Main Memory Database

Computer Systems Applications 19(12)

[6] Zhang Y, Lan L 2012 Concurrent Access Algorithms Based on the
Multi-Grain Locking Transactions Microcomputer & Its

Applications 05

[7] Sang C 2013 Research on Consistency of Multi-Tenant Database
[D]Shandong University 2013

[8] Pandis I, Johnson R, Hardavellas N, Ailamaki A 2010 Data Oriented

Transaction Execution VLDB
[9] Curino C, Jones E P C, Madden S, Balakrishnan H 2011 Workload

Aware Database Monitoring and Consolidation SIGMOD

[10] Zheng Y, Sang C, Meng X, Li Q Tenant Oriented Lock Granularity
Adjustment Strategy in the Shared Storage Multi-tenant Database

ICNDS JDCTA

Author

Zhang Yonghua, 1979.06.20, Shijiazhuang, China.

Current position, grades: Director, Engineer in Shijiazhuang University Of Economics.
University studies: Shijiazhuang University Of Economics and Xidian University.
Scientific interest: database and database concurrency control, internet, data encryption.
Publications: 11 papers.

